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Abstract. In their work published in 2007 [4], Vershynin and Rudelson proposed a
novel approach to bound the number of samples needed for sparse recovery with Fourier
measurements. We give an introduction to the field of sparse recovery, then present the
following series of key tricks that allow Vershynin and Rudelson to reduce the problem
to one that involves Gaussian processes: we first provide an alternative definition of the
restricted isometry constant, then derive a bound for its expectation, then rephrase the
key lemma in the previous derivation as a chaining problem, and finally state relevant
theorems in chaining without proofs to conclude the lemma.

1 Introduction

1.1 Consider a Setup Where...

A signal f ∈ Cn is transformed through the Discrete Fourier Transform. This can be thought
of as a matrix multiplication where the transform matrix is defined by

Ψω,t :=
1√
n
exp(−i2πωt/n), ω, t ∈ {0, ..., n− 1}. (1)

The transform matrix Ψ ∈ Cn×n’s (ω + 1)th, (t + 1)th entry is given by the above expression.
The transformed signal is given by f̂ = Ψf . Each time we make a measurement, a row of Ψ is
chosen at random and the (ω + 1)th entry of f̂ is revealed to us. We wish to reconstruct the
unknown f via sampling from f̂ with the following procedure:

• Step 1: k points, denoted as set Ω, are chosen uniformly at random in the set {0, ..., n−1}.

• Step 2: measurements are observed. That is, for ω ∈ Ω, observe f̂(ω) = Ψωf ∈ Cn.

• Step 3: solve the following convex linear program

minimize ∥g∥1
subject to Ψωg = Ψωf, ω ∈ Ω

• Step 4: claim that the optimal solution to the above problem, g∗ ∈ Cn to be f .

Of course, at the current level of generality our procedure would fail, so we must also add several
conditions.

• Condition 1: f is r-sparse, or ∥f∥0 = r, or exactly r entries of f are non-zero.

• Condition 2: Ω or ΨΩ satisfies the Restricted Isometry Property (RIP).

The famous paper by Tao and Candes [1] has already revealed to us that under these two
conditions, solving the optimization problem in step 3 would grant us exact recovery of f . This
is a reduction from a difficult problem (exact recovery is equivalent to solving the problem in
step 3 with ∥g∥0, which is non-convex) to a much easier problem (since ∥·∥1 is convex).
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1.2 This Problem Matters Because...

In reality, we’re examining a specific instance of a much boarder class of problem: Compressed
Sensing, or Sparse Recovery. To move apart a little from mathematical abstractions, the
signal f we considered in the previous section can be thought of as "a function that conveys
information about a phenomenon. Any quantity that can vary over space or time can be used as
a signal to share messages between observers [5]." Some examples include audio, video, speech,
image, sonar, and radar.

What role does sparsity play here? "Sparse signal models provide a mathematical framework
for capturing the fact that in many cases these high-dimensional signals contain relatively little
information compared to their ambient dimension [2]."

Typically, it is not that the signal itself is sparse but that it is naturally sparse in the
measurement basis. In our example we considered a signal that is sparse itself, but if we were
to consider another that’s sparse in the Fourier basis, then we would be assuming sparsity on f̂ .

Measurements can also be of various forms. In our example, the Fourier measurement matrix
is a deterministic matrix, and when we sample we are choosing its rows at random. We can also
consider some other matrices where the entries are sampled from an i.i.d. Gaussian distributions
(this would be Gaussian measurements), or if the rows are not chosen uniformly at random. Each
method of measurement has its own advantage: for instance, sometimes the data collection
process naturally samples from the transformed signal.

1.3 Today, We Will Explore...

Back to our problem setup, we haven’t answered every question. How many samples do we need
to take if we want to successfully recover f? We know by condition 2 that as long as ΨΩ satisfies
the RIP condition, we can apply Tao’s result. However, because Ω is random, ΨΩ is a random
matrix, and of course it can only satisfy the RIP with certain probability.

We’re interested in the trade-off between this success probability and the number of samples
k we take. In reality, for a fixed success rate, the number of samples we take also depends on the
signal dimension n and the signal’s sparsity r. The following theorem formalizes (more than)
what we wish to prove.

Theorem 1. Let t > 1 be a trade-off variable

• k(t, n, r) scales as k = s log s log2 r, where s(t, n, r) = O(tr log n).

• The success probability p scales as 1− exp(−O(t)).

Reminder that Ω depends on k(t, n, r). Then, for any t, with probability p, ΨΩ satisfies the RIP.

Remark 2. This theorem is a major improvement over the previous Tao’s result in the following
way: fix p = 0.99 for example, and this would correspond to a t. Plug this t into k(t, n, r),
and we would get that k(n, r) = O(r log4 n). The previous result by Tao gives a scaling factor
k′(n, r) = O(r log6 n). In the context when r is small, this improves sampling efficiency by orders
of magnitude.

Of course, we will not be able to prove everything related to Theorem 1. However, we will
tackle the key argument in this proof. On a high level, in order to prove theorem 1, we must
show ΨΩ satisfy the RIP with high probability. This is equivalent to proving that some random
variable δr (δr depends on Ω) is small enough. The proof of theorem 1 first establishes that
δr has a very small expectation, then uses traditional techniques in concentrated inequalities to
tail bound δr. The first part of this argument is what we will focus on. Specifically, we will
establish from scratch the reduction from the problem of bounding expectation to a problem of
the expected supremum of Gaussian process. This is done through the following steps:
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• First, we would like to not only formalize the RIP condition but also derive a more con-
venient form. This is done in section 2.1. As a result, we know that ΨΩ satisfies the RIP
condition if the random variable δr >

1
2 , where

δr = sup
|T |≤r

∥∥∥∥∥idCT − 1

k

∑
i∈Ω

yTi ⊗ yTi

∥∥∥∥∥ .
• Second, section 3 takes a key lemma and proves an upper bound for Eδr through formalizing

the randomness of Ω, implementing an argument of symmetrization using Rademacher
random variables, applies the given lemma, and finally bounds Eδr by a function of itself
using triangle inequality:

Eδr ≤ O(

√
1

t
).

• Third, section 4.1 reduces lemma 7 to a problem involving Gaussian processes through the
comparison principle.

• Finally, section 4.2 states some results in Dudley’s inequality and Metric Entropy. It
is impossible to build this part of the theory from scratch, but we provide the results
necessary for the completion of our argument.

1.4 Preliminaries and Notations

This text is intended to be self-contained. In this section we briefly state all the common tools
we will use and our notations.

Symbol Description

xT If x ∈ Cn is a row or column vector, T ⊆ {1, ..., n} is an index set,
then xT represents the entries of x at the indices in T . Note that
|xT | = |T |.

ΨT If Ψ ∈ Cm×n is a matrix and T is the same as before, then ΨT ∈
C|T |×n represents the rows of Ψ that are indexed by elements in T .

ΨT2
T1

Similarly, if T1, T2 are both index sets, then ΨT2
T1

∈ C|T1|×|T2| is the
matrix Ψ having rows indexed by T1 and columns indexed by T2.

idCT The identity matrix in the space CT .
∥A∥op Operator norm. Suppose A ∈ C|T1|×|T2|, then this norm is defined

between lT1
2 and lT2

2 to be sup∥x∥2=1 ∥Ax∥2.
x⊗ x Tensor Product between x ∈ Cn and itself. Given a vector v ∈ Cn,

we have (x⊗ x)(v) = ⟨x, v⟩x.

In addition to this, the other notations are standard. For example, |T | means the size of T .
A∗ is the conjugate transpose of A. One should know ∥·∥i for i ∈ {0, 1, 2}. One should also be
familiar with Jensen’s inequality and Cauchy Schwarz inequality.

2 The Two Definitions of the RIP Condition

2.1 The original definitions of RIP

We provide, first, the formal definition of the RIP and its associated constant δr.
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Definition 3. Conditioned on Ω, the restricted isometry constant δr for ΨΩ ∈ Ck×n is defined
to be the smallest positive number such that the following inequality holds:

(1− δr) ∥x∥22 ≤
∥∥ΨT

Ωx
∥∥2
2
≤ (1 + δr) ∥x∥22 .

This relation must hold for any x ∈ C|T | and any T ⊆ {1, ..., n} : |T | ≤ r.

Definition 4. We say ΨΩ satisfies the RIP if the constants δ3r and δ4r satisfy

δ3r + 3δ4r ≤ 2.

Now, we make the following observation:

Observation 5. δr is non-decreasing in r, or δr ≤ δ2r ≤ ...

This is easy to see from definition 3 because a T with size at most r is also a T with size
at most 2r. Thus, it is sufficient to prove 4δ4r ≤ 2, or δ4r ≤ 1

2 , for RIP to be satisfied. We can
moreover replace r by 4r and change the constant in the definition of k.

2.2 A second definition of the RIP constant

Theorem 6. An equal definition for δr is

δr = sup
|T |≤r

∥∥∥∥∥idCT − 1

k

∑
i∈Ω

yTi ⊗ yTi

∥∥∥∥∥
op

.

where yi is the re-normalized i-th row of Ψ: yTi =
√

|Ω|ΨT
i . yTi ∈ C|T |.

Proof. Starting with definition 3, we can arrange the expression to be

|
∥∥ΨT

Ωx
∥∥2
2
− ∥x∥22 | ≤ δr ∥x∥22 .

The LHS is simplified to be (we use linearity and conjugate symmetry of the inner product)∥∥ΨT
Ωx

∥∥2
2
− ∥x∥22 =

〈
ΨT

Ωx,Ψ
T
Ωx

〉
− ⟨x, x⟩ =

〈
((ΨT

Ω)
∗ΨT

Ω − idCT )x, x
〉
.

Thus,

δr ≥
〈
((ΨT

Ω)
∗ΨT

Ω − idCT )x, x
〉

∥x∥22
for all x and T .

Since we want to find the smallest positive number, this is equivalent to

δr = sup
|T |≤r,x∈CT

〈
((ΨT

Ω)
∗ΨT

Ω − idCT )x, x
〉

∥x∥22
= sup

|T |≤r,∥x∥22=1

∥∥((ΨT
Ω)

∗ΨT
Ω − idCT )x

∥∥
2
.

The last step is because ((ΨT
Ω)

∗ΨT
Ω − idCT ) is Hermitian. Now, by definition of operator norm

which is provided before, we have

δr = sup
|T |≤r

∥∥((ΨT
Ω)

∗ΨT
Ω − idCT )

∥∥
op
.

Lastly, consider a vector v ∈ C|T |. We have (|Ω| = k)

(ΨT
Ω)

∗ΨT
Ωv = (ΨT

Ω)
∗[
〈
ΨT

1 , v
〉
, ...]⊤ =

∑
i∈Ω

〈
ΨT

i , v
〉
ΨT

i = (
∑
i∈Ω

ΨT
i ⊗ΨT

i )(v) = (
1

k

∑
i∈Ω

yTi ⊗ yTi )(v).

This completes the proof.
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3 Symmetrization

3.1 Toolbox

Recall that we want to show if we take k = (Ctr log n) log(Ctr log n) log2 r uniform measure-
ments, then δr > 1

2 with high probability. In the previous section we have quipped ourselves
with a more convenient form of δr. In this section, we will make a further reduction using what’s
called a symmetrization technique. Specifically, we will first claim a lemma (we’ll discuss it more
in the next section), and then show how this lemma implies our desired result by symmetrization.

Lemma 7. For any m < n, let x1, ..., xm ∈ Cn be vectors with uniformly bounded entries:
∥Xi∥∞ ≤ K for all i, then

E sup
|T |≤r

∥∥∥∥∥
m∑
i=1

ϵix
T
i ⊗ xTi

∥∥∥∥∥
op

≤ k1 sup
|T |≤r

∥∥∥∥∥
m∑
i=1

xTi ⊗ xTi

∥∥∥∥∥
1/2

op

.

Here,

• k1 is a function of m, r, n,K: k1 ≤ C1K
√
r log r

√
log n

√
logm.

• ϵi are independent Rademacher random variables.

We also need to formalize what uniform measurements mean:

Definition 8. We define Ω in the following way: associate each number in {0, ..., n − 1} with
a Bernoulli p = k/n. We include the row with ω equals to this number if the corresponding
Bernoulli realization is 1. This would give us an Ω with size expected to equal k, or E|Ω| = k.

3.2 The Argument

We start by considering the expectation of δr, which is

Eδr = E sup
|T |≤r

∥∥∥∥∥idCT − 1

k

∑
i∈Ω

yTi ⊗ yTi

∥∥∥∥∥
op

.

The first observation we can make is that the two quantities inside of the operator norm equal
in expectation (We’re using the property that Ψ is orthonormal):

idCT =
1

n

n∑
i=1

yTi ⊗ yTi = E
1

k

∑
i∈Ω

yTi ⊗ yTi .

Now, we use the fact that F (·) := sup|T |≤r ∥·∥op is a convex function because operator norm is
convex and supremum of convex functions is convex. Moreover, denote (Xi)i∈Ω := ( 1k ·y

T
i ⊗yTi )i∈Ω

and consider (X ′
i)i∈Ω an independent copy of (Xi)i∈Ω,

Eδr = EF ((E
∑
i∈Ω

Xi)−
∑
i∈Ω

Xi) = EF (
∑
i∈Ω

(Xi − EXi)) ≤ EF (
∑
i∈Ω

(Xi −X ′
i)).

In the last step we used the fact that EXi = EX ′
i and then applied Jensen’s inequality. We

observe that since (Xi − X ′
i)i∈Ω is a sequence of independent symmetric random variables, it

has the same distribution as (ϵi(Xi −X ′
i))i∈Ω. Thus, by convexity of F ,

EF (
∑
i∈Ω

(Xi −X ′
i)) = EF (

∑
i∈Ω

ϵi(Xi −X ′
i)) ≤ E(

1

2
F (2

∑
i∈Ω

ϵiXi) +
1

2
F (2

∑
i∈Ω

ϵiX
′
i)) ≤ EF (2

∑
i∈Ω

ϵiXi).
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We’ve thus shown with the symmetrization argument that

Eδr ≤ 2E sup
|T |≤r

∥∥∥∥∥1k ∑
i∈Ω

ϵiy
T
i ⊗ yTi

∥∥∥∥∥
op

.

A key observation is that the RHS an expectation taken over both Ω and (ϵi)
|Ω|
i=1. Conditioning

on Ω would put us in the setting of using lemma 7 because yi becomes deterministic:

2E sup
|T |≤r

∥∥∥∥∥1k ∑
i∈Ω

ϵiy
T
i ⊗ yTi

∥∥∥∥∥
op

= 2EΩEϵ sup
|T |≤r

∥∥∥∥∥1k
m∑
i=1

ϵiy
T
ai ⊗ yTai

∥∥∥∥∥
op

| Ω = {a1, ..., am}

≤ 1

k
2EΩk1 sup

|T |≤r

∥∥∥∥∥∑
i∈Ω

yTi ⊗ yTi

∥∥∥∥∥
1/2

op

≤ 2C1K
√
r log r

√
log n

k
EΩ

√
log |Ω| sup

|T |≤r

∥∥∥∥∥∑
i∈Ω

yTi ⊗ yTi

∥∥∥∥∥
1/2

op

≤ 2C1K
√
r log r

√
log n

k
(EΩ log |Ω|)1/2(EΩ sup

|T |≤r

∥∥∥∥∥∑
i∈Ω

yTi ⊗ yTi

∥∥∥∥∥
op

)1/2.

In the third step, because we applied lemma 7 with m = |Ω| being a random quantity, the√
log |Ω| needs to stay in the expectation. In the next step we applied Cauchy-Schwarz’s inequal-

ity, namely EXY ≤ (EX2)1/2(EY 2)1/2. Now, we have to deal with the two terms in expectation
respectively. For the first one, Jensen’s inequality gives us E log |Ω| ≤ logE|Ω| = log k. For the
second one, we use the triangular inequality for norms, namely ∥u− v∥ ≥ | ∥u∥ − ∥v∥ |:

E sup
|T |≤r

∥∥∥∥∥idCT − 1

k

∑
i∈Ω

yTi ⊗ yTi

∥∥∥∥∥
op

≥ E sup
|T |≤r

∥∥∥∥∥1k ∑
i∈Ω

yTi ⊗ yTi

∥∥∥∥∥
op

− E sup
|T |≤r

∥idCT ∥op .

This implies

E sup
|T |≤r

∥∥∥∥∥∑
i∈Ω

yTi ⊗ yTi

∥∥∥∥∥
op

≤ E sup
|T |≤r

∥idCT ∥op − Eδr ≤ k(1 + Eδr).

Plugging this back into our previous result yields

Eδr ≤
2C1K

√
r log r

√
log n√

k

√
log k

√
Eδr + 1 ≤ C2

√
log tr log n+ log log tr log n+ log log r√

t log(tr log n)
.

Here, we plugged in the value of k assumed in the very beginning. Since Eδr is small, the term
1 + Eδr is approximated to be 1. Observe that the log log terms all get dominated. We thus
have

Eδr ≤ C3
1√
t
.

4 From Rademacher to Gaussian

4.1 Reduction to Gaussian Process

In this section, we reduce the lemma 7 provided in the previous section to a Gaussian process
formulation. Formally, this is called the Comparison Principle.
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We start with, F (·) = sup|T |≤r and (Xi)
m
i=1 = (xTi ⊗ xTi )

m
i=1. Consider, again ϵi to be

independent Rademacher random variable. Consider also gi as an independent sequence of
standard Gaussians.

Symmetry gives us that ϵi|gi| has the same distribution as gi. The quantity on the LHS of
lemma 7 is

EF (

∥∥∥∥∥
m∑
i=1

giXi

∥∥∥∥∥
op

) = EF (

∥∥∥∥∥
m∑
i=1

ϵi|gi|Xi

∥∥∥∥∥
op

) ≥ EF (

∥∥∥∥∥
m∑
i=1

ϵiE|gi|Xi

∥∥∥∥∥
op

) ≥ EF (

√
2

π

∥∥∥∥∥
m∑
i=1

ϵiXi

∥∥∥∥∥
op

).

Where the second step comes from Jensen’s inequality and partial integration. Note that we
already claimed F is convex in the previous part. The last step comes from the expected absolute
value of a standard Gaussian: namely, E|gi| =

√
2/π. We can take this constant out of F . Now,

we have a bound using Gaussian process:

E sup
|T |≤r

∥∥∥∥∥
m∑
i=1

ϵix
T
i ⊗ xTi

∥∥∥∥∥
op

≤ C4E sup
|T |≤r

∥∥∥∥∥
m∑
i=1

gix
T
i ⊗ xTi

∥∥∥∥∥
op

.

We apply the definition of operator norm:∥∥∥∥∥
m∑
i=1

gix
T
i ⊗ xTi

∥∥∥∥∥
op

= sup
v:∥v∥2≤1

∥∥∥∥∥(
m∑
i=1

gix
T
i ⊗ xTi )(v)

∥∥∥∥∥
2

= sup
v:∥v∥2≤1

|
m∑
i=1

gi
〈
xTi , v

〉2 |.
Plug this back into the expectation, and let BT

2 denote the unit ball of l2 on CT . We have

E sup
|T |≤r

∥∥∥∥∥
m∑
i=1

gix
T
i ⊗ xTi

∥∥∥∥∥
op

= E sup
|T |≤r,v∈BT

2

|
m∑
i=1

gi ⟨xi, v⟩2 |.

We’ve finally reached the end of the series of arguments!

4.2 Some Results from Chaining and Metric Entropy

The expected supremum of a Gaussian process is a well studied problem [3]. Because this is
not the direct goal of this project, we will not explore the theory from scratch. However, in this
section we still provide some results that would complete the proof of our lemma 7.

Definition 9. Gaussian Process: (Xt)t∈T is a Gaussian process if for every finite subset of the
index set T , every linear combination of the X-s defined by them is Gaussian.

We see that what we arrived at in the end of the last section is a Gaussian Process on the
index set ∪|T |≤rB

T
2 . Take an arbitrary number of elements from this set, we now have a jointly

Gaussian vector because each element is a linear combination of the gi-s.
Specifically, with our index set ∪|T |≤rB

T
2 , we can apply the following theorem:

Theorem 10. Dudley’s Inequality: let X = (Xt)t∈T be a Gaussian process, then

E sup
t∈T

Xt ≤ C4

∫ ∞

0
logN(T, dX ; ϵ)1/2 dϵ.

where C4 is some constant.

Definition 11. Entropy Number: fix ϵ > 0, we define the entropy number N(T, d; ϵ) is the
minimum number of open balls of radius ϵ necessary to cover T .
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In our case, the metric we use ends up being

dX(x, y) = 2 sup
|T |≤r

∥∥∥∥∥
m∑
i=1

xTi ⊗ xTi

∥∥∥∥∥
1/2

max
i≤k

| ⟨xi, x− y⟩ |.

Notice that the first term in the above expression appears in the end result of lemma 7. We
basically separate it out and bound the entropy number in order to obtain the desired k1 constant
as given in the lemma. This would complete of proof of the lemma, and thus complete the proof
that Eδr is small.
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